Package: GeDS 0.2.4

GeDS: Geometrically Designed Spline Regression

Spline Regression, Generalized Additive Models, and Component-wise Gradient Boosting, utilizing Geometrically Designed (GeD) Splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of Generalized (Non-)Linear Models, offering a flexible approach to modeling complex relationships. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes Generalized Additive Models (GAM) and Functional Gradient Boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2024).

Authors:Dimitrina S. Dimitrova [aut], Emilio S. Guillen [aut, cre], Vladimir K. Kaishev [aut], Andrea Lattuada [aut], Richard J. Verrall [aut]

GeDS_0.2.4.tar.gz
GeDS_0.2.4.zip(r-4.5)GeDS_0.2.4.zip(r-4.4)GeDS_0.2.4.zip(r-4.3)
GeDS_0.2.4.tgz(r-4.4-x86_64)GeDS_0.2.4.tgz(r-4.4-arm64)GeDS_0.2.4.tgz(r-4.3-x86_64)GeDS_0.2.4.tgz(r-4.3-arm64)
GeDS_0.2.4.tar.gz(r-4.5-noble)GeDS_0.2.4.tar.gz(r-4.4-noble)
GeDS_0.2.4.tgz(r-4.4-emscripten)GeDS_0.2.4.tgz(r-4.3-emscripten)
GeDS.pdf |GeDS.html
GeDS/json (API)

# Install 'GeDS' in R:
install.packages('GeDS', repos = c('https://emilioluissaenzguillen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/emilioluissaenzguillen/geds/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

4.12 score 19 scripts 288 downloads 19 exports 43 dependencies

Last updated 2 months agofrom:526ed043e4. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 09 2024
R-4.5-win-x86_64OKNov 09 2024
R-4.5-linux-x86_64OKNov 09 2024
R-4.4-win-x86_64OKNov 09 2024
R-4.4-mac-x86_64OKNov 09 2024
R-4.4-mac-aarch64OKNov 09 2024
R-4.3-win-x86_64OKNov 09 2024
R-4.3-mac-x86_64OKNov 09 2024
R-4.3-mac-aarch64OKNov 09 2024

Exports:BivariateFitterbl_impcrossv_GeDSDeriveGenBivariateFitterGenUnivariateFitterGGeDSIntegrateIRLSfitlinesNGeDSNGeDSboostNGeDSgamplotPPolyRepSplineReg_GLMSplineReg_LMUnivariateFittervisualize_boosting

Dependencies:abindarmbootcodacodetoolsdigestdoFuturedoParalleldoRNGforeachFormulafuturefuture.applyglobalsgmpinumiteratorslatticelibcoinlistenvlme4MASSMatrixmboostmiminqamisc3dmvtnormnlmenloptrnnlsparallellypartykitplot3DquadprogRcppRcppEigenRmpfrrngtoolsrpartstabssurvivalTH.data

Readme and manuals

Help Manual

Help pageTopics
GeDSGeDS-package GeDS
Barium-Ferrum-Arsenide Powder Diffraction DataBaFe2As2
Fitter function for GeD Spline Regression for bivariate dataBivariateFitter BivariateFitters GenBivariateFitter
Base Learner Importance for GeDSboost objectsbl_imp bl_imp.GeDSboost
Coal Mining Disasters datacoalMining
Coef method for GeDS objectscoef.GeDS coefficients.GeDS
Coef method for GeDSboost, GeDSgamcoef.GeDSboost coef.GeDSboost, coef.GeDSboost,gam coef.GeDSgam coefficients.GeDSboost coefficients.GeDSgam
k-fold cross-validationcrossv_GeDS
Derivative of GeDS objectsDerive
Deviance method for GeDS, GeDSboost, GeDSgamdeviance.GeDS deviance.GeDSboost deviance.GeDSgam
Death counts in England and WalesEWmortality
Defining the covariates for the spline component in a GeDS formula.f
Formula for the predictor modelformula.GeDS
GeDS ClassGeDS-Class GeDS-class
GeDSboost ClassGeDSboost-Class GeDSboost-class
GeDSgam ClassGeDSgam-Class GeDSgam-class
Generalized Geometrically Designed Spline regression estimationGGeDS
Defined integral of GeDS objectsIntegrate
IRLS EstimationIRLSfit
Knots method for GeDS, GeDSboost, GeDSgamknots.GeDS knots.GeDSboost knots.GeDSboost, knots.GeDSgam
Lines method for GeDS objects.lines,GeDS-method lines.GeDS
Geometrically Designed Spline regression estimationNGeDS
Component-wise gradient boosting with NGeDS base-learnersNGeDSboost
NGeDSgam: Local Scoring Algorithm with GeD Splines in BackfittingNGeDSgam
Plot method for GeDS objects.plot,GeDS,ANY-method plot,GeDS-method plot.GeDS
Plot method for GeDSboost objects.plot,GeDSboost,ANY-method plot,GeDSboost-method plot.GeDSboost
Plot method for GeDSgam objects.plot,GeDSgam,ANY-method plot,GeDSgam-method plot.GeDSgam
Piecewise Polynomial Spline RepresentationPPolyRep
Predict method for GeDS objectspredict.GeDS
Predict method for GeDSboost, GeDSgampredict.GeDSboost predict.GeDSboost, predict.GeDSboost,gam predict.GeDSgam
Print method for GeDS, GeDSboost, GeDSgamprint.GeDS print.GeDSboost print.GeDSgam
Estimation of the coefficients of a predictor model with spline and possibly parametric components.SplineReg SplineReg_GLM SplineReg_LM
Functions used to fit GeDS objects with an univariate spline regression componentFitters GenUnivariateFitter UnivariateFitter UnivariateFitters
Visualize Boosting Iterationsvisualize_boosting visualize_boosting.GeDSboost